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Coupling gauge fields to the chiral currents from an effective Lagrangian for pseudoscalar m
naturally gives rise to a species doubling phenomenon similar to that seen with fermionic fields in
gauge theory. [S0031-9007(96)00484-X]
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Species doubling is one of the oldest puzzles in latt
gauge theory. Naive fermion formulations on a lattice a
plagued by the appearance of spurious low energy sta
Various schemes have been implemented to remove
extra particles, but usually at the expense of mutilat
valid symmetries. Only recently has a lattice formulati
been presented that elegantly preserves the underl
chiral invariance of the strong interactions [1].

The problem is intricately entwined with the famou
axial anomalies. A lattice regulator removes all infinitie
so anomalies require an explicit symmetry breaking
the outset. This is also familiar from the Pauli-Villar
[2] approach, where the mass of the heavy regula
field is not chirally symmetric. As the regulator i
removed, it leaves a remnant determining an overall ch
phase. When the physical quarks maintain a finite ma
this phase is observable as the well-known strongCP
parameteru [3].

Going beyond purely hadronic physics to the gau
interactions of the electroweak theory, nonperturbat
chiral issues remain unresolved. TheW bosons couple
in an inherently parity violating manner, and rely fo
consistency on a subtle anomaly cancellation betw
quark and lepton contributions. While a flurry of rece
work has advocated treating the fermions with a sepa
limit [4–6], it remains unknown how to implemen
this cancellation in a fully finite and gauge-invaria
lattice theory. It is tempting to speculate that there
a shortcoming in either the lattice approach or in t
standard model.

Here we argue that the so-called “doubling” proble
is not unique to the lattice approach, but is a mo
general consequence of chiral anomalies. Starting w
an effective Lagrangian for the strong interactions of t
pseudoscalar mesons, we consider coupling gauge fi
to the SUsnfd 3 SUsnf d symmetries of this model. When
these gauge fields are themselves chiral, the gaug
process naturally introduces additional Goldstone fie
mirroring the original theory. As with the lattice doubler
the mirror fields cancel anomalies. The issue reduce
nonperturbatively removing the extra species when
original theory is anomaly free.

In the chiral Lagrangian approach, the effects of ano
alies are summarized in a term discussed some time
0031-9007y96y76(25)y4671(4)$10.00
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by Wess and Zumino [7], and later elucidated by Witt
[8]. This coupling requires extending the fields into
internal space, only the boundary of which is relevan
the equations of motion. On adding a coupling to a lo
gauge field, however, the boundary can acquire additio
contributions. The essence of this paper is that these
most naturally written in terms of doubler fields.

Reference [9] treats a canonical quantization of ano
lous fermion theories. For consistency they couple
gauge fields to a Wess-Zumino term. While their start
point was rather different, they reach a similar conclus
that anomalous theories naturally lead to the introduc
of new degrees of freedom.

To start, we briefly review the basic philosophy behi
the effective Lagrangian approach. Our underlying the
contains a set of fermionic quark fieldscasxd interacting
with non-Abelian gauge fields. Here we suppress
indices except flavor, represented by the indexa, and
space-time, represented byx. From c we project out
right- and left-handed parts,ca

R ­
1
2 s1 1 g5dca and

c
a
L ­ 1

2 s1 2 g5dca. For the purpose of this discussio
we ignore fermion masses; such could be introduced
in the standard model, via a Higgs mechanism.

The underlying quark-gluon theory with massle
quarks is invariant under a global SUsnf d 3 SUsnf d sym-
metry, wherenf represents the number of flavors. Und
this, the quark fields transform asca

L ! cbgba
L and

c
a
R ! cbgba

R . HeregL and gR are elements of SUsnf d.
Formally the classical Lagrangian is also invariant un
a global Us1d 3 Us1d symmetry of phases for the left an
right quark fields, but the axial part of the latter symme
is broken by quantum effects, leaving just the vector Us1d
of fermion number. While anomalies also play the k
role in this breaking, that is not the subject of this pape

In the conventional view, the axial part of the glob
chiral symmetry is spontaneously broken by the vacu
resulting in n2

f 2 1 Goldstone bosons and a remaini
explicit SUsnfd flavor symmetry. This is usually de
scribed via the composite fieldca

Rc
b
L acquiring a vac-

uum expectation value. Without flavor breaking, one c
use the chiral symmetry to pick a standard vacuum w
say,kca

Rc
b
Ll ­ ydab. Here the parametery determining

the magnitude of the expectation value requires a re
malization scheme for precise definition. The vacu
© 1996 The American Physical Society 4671
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is degenerate (after the usual extension of the quan
Hilbert space to a Banach space), and one could ch
to replacedab by an arbitrary elementgab of SUsnfd.
The basic idea of the effective Lagrangian is to prom
this element into a local fieldgsxd. Slow variations of
this field represent the Goldstone bosons arising from
degeneracy of the vacuum.

Equivalently, imagine integrating out the fermion
fields under a constraintkca

Rc
b
Ll ­ ygabsxd; ignore the

massive modes associated with fluctuations iny, and
use the resulting path integral to define an effective
ory for gsxd [ SUsnf d. The chiral symmetry become
an invariance undergsxd ! g

y
LgsxdgR for arbitrary gL

andgR .
More quantitatively, the approach represents an ex

sion in powers of the momenta of the light particles [1
The lowest order action contains the first term in this
pansion

S0 ­
F2

p

4

Z
d4

x Trs≠mg≠mgyd . (1)

The numerical constantFp sets the scale and has
experimental value around 93 MeV. To relate this
conventionally normalized pion fields, we defineg ­
expsip ? lyFp d where then2

f 2 1 matricesl generate
SUsnf d and are normalized Trlalb ­ 2dab.

From this lowest order action, the equations of mot
are≠mJa

L,m ­ 0, where the “left” current is

Ja
L,m ­

iF2
p

4
Trlas≠mgdgy . (2)

These equations have an equivalent form involv
“right” currents Ja

R,m ­
iF2

p

4 Trlagy≠mg. There is a
vast literature about adding higher derivative terms to
above action [11]. This, however, is not what this pa
is about.

We are interested in a special higher derivative c
pling which is necessarily present and describes the
fects of anomalies from the underlying quark fields.
is well known, this term is curious in that it cannot
written simply as an integral of a local expression ingsxd,
even though the resulting contribution to the equation
motion is fully local [7,8,11]. Continuing to write th
equations of motion in terms of a current, a possible a
tion which satisfies the required symmetries is

Ja
L,m ­

iF2
p

4
Trlas≠mgdgy

1
inc

48p2
emnrs Trlas≠ngdgys≠rgdgys≠sgdgy .

(3)

The equations of motion remain that the current
divergenceless,≠mJa

L,m ­ 0.
The addition in Eq. (3) is the simplest possible te

involving the antisymmetric tensor, a shadow of
4672
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factors of g5 involved in the chiral anomalies. As i
also well known [8], quantum mechanics requires t
dimensionless coupling strengthnc to be an integer
corresponding to the number of degrees of freed
(“colors”) in the underlying confining theory. Thus th
term must indeed be present.

Continuing with this lightning review, we desire a
action which generates the above equations of mot
This requires extending the fieldgsxd beyond a simple
mapping of space-time into the group. For this purpo
we introduce an auxiliary variables to interpolate between
the field gsxd and some fixed group elementg0. Thus
we consider an extended fieldhsx, sd satisfyinghsx, 1d ­
gsxd and hsx, 0d ­ g0. This extension is not unique
but the final equations of motion are independent of
chosen path. We now write the action

S ­
F2

p

4

Z
d4x Trs≠mg≠mgyd

1
nc

240p2

Z
d4x

Z 1

0
dseabgdr Trhahbhghdhr .

(4)

Here we introduce the shorthand notationha ­ is≠ahdhy

and regards as a fifth coordinate. The antisymmetr
tensor satisfiese1,2,3,4,5 ­ 1.

To find the equations of motion, consider a small va
ation of hsx, sd. This can be shown to change the fin
integrand by a total divergence, which then integrates
a surface term. Working with either spherical or toroid
boundary conditions in the space-time directions, this s
face involves only the boundaries of thes integration.
When s ­ 0, space-time derivatives acting on the co
stant matrixg0 will vanish. The surface ats ­ 1 gener-
ates precisely the desired additional term in Eq. (3).

Geometrically, the last term in Eq. (4) is the volum
of a piece of theS5 sphere appearing in the structu
of SUsnf d for nf $ 3. The mapping of four-dimensiona
space-time into the group surrounds this volume. Glo
chiral rotations merely shift this region around, leaving
numerical volume invariant. As emphasized by Witt
[8], this volume is defined only up to a multiple of th
total volume of theS5 mapping into the gauge group
Different extensions into thes coordinate can modify the
above five-dimensional integral by an integer multip
of 480p3. To have a well-defined quantum theory, t
action must be determined up to a multiple of2p. Thus
the quantization ofnc to an integer value occurs, muc
like the charge of a magnetic monopole.

Crucial to this discussion is the irrelevance of the sta
ing group elementg0 and the lower end of thes integra-
tion. The main point of this paper is to emphasize t
difficulty of maintaining this condition when the symme
tries become local. In particular, we want to extend
symmetry and allowgR,L to depend on the space-tim
coordinatex. As usual, this requires the introduction
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local gauge fields. When we make the transformat
gsxd ! g

y
LsxdgsxdgRsxd, derivatives ofg transform as

≠mg °! g
y
L

≥
≠mg 2 ≠mgLg

y
Lg 1 g≠mgRg

y
R

¥
gR . (5)

To compensate, we introduce left and right gauge fie
transforming as

AL,m °! g
y
LAL,mgL 1 ig

y
L≠mgL ,

AR,m °! g
y
RAR,mgR 1 ig

y
R≠mgR . (6)

Then the combination

Dmg ­ ≠mg 2 iAL,mg 1 igAR,m (7)

transforms nicely: Dmg ! g
y
LDmggR . If we make the

generalized minimal replacement≠mg ! Dmg in S0, we
find a gauge invariant action.

A problem arises when we go on to the Wes
Zumino term. We require a prescription for the gau
transformation on the interpolated group elementhsx, sd.
For this purpose, note a striking analogy with the dom
wall approach to chiral fermions first promoted by Kapl
[12]. There an extra dimension was also introduc
with the fermions being surface modes bound to a fo
dimensional interface. The usual approach to add
gauge fields involves, first, not giving the gauge fields
dependence on the extra coordinate, and second, for
the component of the gauge field pointing in the ex
dimension to vanish [13,14]. To be more precise, in ter
of a five-dimensional gauge field, we takeAmsx, sd ­
Asxd and As ­ 0 for both the left- and right-hande
parts. Relaxing either of these would introduce ex
degrees of freedom for which there is no desire. Th
the natural extension of the gauge transformation to
values ofs is to takehsx, sd ! g

y
Lsxdhsx, sdgRsxd with

gL,R independent ofs.
With this prescription for interpolating the gauge fiel

into the s dimension, we replace the derivatives in t
Wess-Zumino term with covariant derivatives, similar
Eq (7). This alone does not give equations of mot
independent of the interpolation into the extra dimensi
However, adding terms linear and quadratic in the ga
field strengths allows construction of a five-dimension
Wess-Zumino term for which variations are again a to
derivative. The term is still ambiguous up to nonminim
coupling. For the photon, parity invariance uniquely fix
such terms, but this goes beyond the subject of this pa

This procedure works well for a vectorlike gauge fie
where we takegLsxd ­ gRsxd andAL ­ AR . We could,
for example, takeg0 to be the identity, and then th
gauge transformation cancels out ats ­ 0. The approach
gives the coupling of the photon field to the pseudosca
mesons, including [8] a piece that describesp ! 2g.
This supports the necessity of the Wess-Zumino te
n
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and determines the coefficient to be proportional to
dimension of the quark representation in the underly
confining symmetry group.

A difficulty arises when coupling a gauge field to a
axial current. For example, the weak bosons of the st
dard electroweak theory involve such a coupling.
this case the above prescription ats ­ 0 takes g0 !

g
y
Lsxdg0gRsxd, which in general will no longer be a con

stant group element. After a gauge transformation, va
ations of the action give new nonvanishing contributio
to the equations of motion from the lower end of thes
integration.

The simplest solution promotes thes ­ 0 fields to be
dynamical. Thus we replace the fieldgsxd with two
fields g0sxd and g1sxd. The interpolating field now has
the propertieshsx, 0d ­ g0sxd and hsx, 1d ­ g1sxd. The
action becomes

S ­
F2

p

4

Z
d4x TrsDmg0Dmg

y
0 1 Dmg1Dmg

y
1 d 1 G ,

(8)

whereG denotes the appropriately gauged Wess-Zum
term.

While we now have a gauge invariant theory, it diffe
from the starting theory through doubling of meso
species. The extra particles are associated with the se
set of group valued fieldsg0sxd. The Wess-Zumino term
of the new fields has the opposite sign since it comes fr
the lower end of thes integration. Thus these “mirror”
particles have reflected chiral properties and implem
a cancellation of all anomalies. In essence, we ha
circumvented the subtleties in gauging the model.

The value ofFp need not be the same forg0 and
g1, so their strong interactions might differ in scal
Nevertheless, coupling with equal magnitude to the ga
bosons, the new fields cannot be ignored. The doublin
less severe than in the lattice approach, where each pa
in the number of fermion fields gives a factor of four
boson species.

Had we only coupled gauge fields to vector currents,
could easily remove the doublers using a diagonal m
term ats ­ 0. For example, with a termM Trg0sxd added
to the Lagrangian density,M could be arbitrarily large,
forcing g0 towards the identity. Such a term is invaria
under vector rotations, but not under axial symmetries.

The doublers arise in complete analogy to the proble
appearing in the surface mode approach to chiral lat
fermions [12–15]. In both cases, an extension to
extra dimension is introduced. Difficulties arise from th
appearance of an extra interface in thes coordinate. This
new surface cannot be ignored since it couples with eq
strength to the gauge fields.

If we relax the constraints and letgL,R depend ons, we
expect problems similar to those seen with domain w
fermions. In particular, when the gauge fields vary
the extra dimension, four-dimensional gauge invarianc
4673



VOLUME 76, NUMBER 25 P H Y S I C A L R E V I E W L E T T E R S 17 JUNE 1996

thi
om
th
an
es
th

es
ng

it
cie
uc

i
it
g
w

da
th
no
da
he
al

ren
o b
he

lin
se
f a
le
e t
se
he
de
ec
ns
e
ry.
so
ad
di
ich
ar
eiv

r
d
-

e

-

ort
l.

s.

p-

p-
-

,

B

lost. Symmetry can be restored via a Higgs field, but
introduces the possibility of unwanted degrees of freed
in the physical spectrum. Reference [14] explores
possibility of sharply truncating the gauge field at
intermediate value of the extra coordinate. This giv
rise to new low energy bound states acting much like
undesired doubler states.

Introducing a Higgs field does permit different mass
for the extra species. In particular, the matter coupli
of the Higgs field can depend ons. Qualitative arguments
suggest that triviality effects on such couplings lim
their strength, precluding masses for the extra spe
beyond a typical weak interaction scale. Presumably s
constraints will be the strongest when the anomalies
the undoubled sector are not properly canceled. W
domain-wall fermions, taking the Higgs-fermion couplin
to infinity on one wall introduces a plethora of new lo
energy bound states [15].

These problems reemphasize the subtle way the stan
model cancels anomalies between the quarks and
leptons. If the contributions of the leptons are ignored,
nonperturbative approach can be expected to accommo
gauged weak currents. Indeed, the doubling discussed
arises as a necessary consequence of residual anom
When the required cancellations occur between diffe
fermion representations, perturbation theory appears t
consistent, while all known nonperturbative approac
remain awkward.

There are several possible solutions to these doub
problems. Least interesting would be some trivial mis
issue in our search for a nonperturbative definition o
chiral gauge theory. On the other hand, mirror partic
might actually exist, perhaps with masses comparabl
the weak scale [16]. Such extra fields might even be u
ful in the spontaneous breaking of the electroweak t
ory [17]. A related alternative has the standard mo
arise from the spontaneous breaking of an underlying v
torlike unified theory containing additional heavy boso
coupling with opposite parity fermions [18]. All of thes
involve a profusion of new particles awaiting discove
A speculative solution would twist the extra dimension
that the doubling particles could be among those alre
observed. This requires the interpolation in the extra
mension to mix the quarks and the leptons, all of wh
are involved in the anomaly cancellations of the stand
model. While such a scheme remains elusive, it conc
ably could require the existence of multiple families.
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